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Abstract

The simulation of reinforced concrete elements due to a seismic loading brings down the

cost of physical experiments, however involves high non-linearities. Many implementation to

tackle this problems have been established through the recent years. This thesis work shows

the implementation of a flexibility-based fiber beam-column element to model the response

of a reinforced concrete element under a cyclic loading in the post-yielding phase. The the-

ory behind the element is discussed as well as the algorithm to carry on the solution. The

element has been implemented in a stand-alone Python code and in the open-source frame-

work KRATOS, which is an open-source FEM framework developed in the chair of Structural

Analysis in the Technical University of Munich, Germany, as well as in International Center

for Numerical Methods in Engineering (CIMNE) in Barcelona, Spain.
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Kurzfassung

Die Simulation von Stahlbeton-Strukturen unter seismischen Belastungen erlaubt eine ef-

fiziente und kostengünstige alternative Analyse zu herkömmlichen Tests. Dabei müssen

jedoch materielle Nichtlinearitäten berücksichtigt werden. Um diese anspruchsvolle Prob-

lemstellung zu simulieren wurden in den letzten Jahren verschiedene Algorithmen entwickelt,

von denen einer in dieser Arbeit behandelt wird. Ein flexibles Faser-Balkenelement wird im-

plementiert um die Strukturantwort eines Stahlbetonbalkens unter einer zyklischen Belastung

zu berechnen. Dabei wird sowohl die zugrunde liegende Theorie als auch der Algorithmus

selbst detailliert besprochen. Das Element wurde in einem eigenständigen Python-Code

und im Open-Source-Framework KRATOS implementiert, das am Lehrstuhl für Statik in der

Technischen Universität München sowie im “International Center for Numerical Methods in

Engineering” (CIMNE) in Barcelona, Spanien, entwickelt wird.

Schlüsselwörter
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ment Formulation; Computational Earthquake Engineering
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1. Introduction

Motivation

The seismic analysis of the response of structures involves non-linear analysis due to the

fact that the loading is cyclic and goes typically beyond the yield point of the elements. The

most common structural elements used in building are reinforced concrete elements which

consist of concrete reinforced by steel bars, as the concrete is a cheap material that is strong

in compression but relatively weak in tension. The element having two types of materials

makes it difficult to analyze the structure especially in post-yield response. Historically, tests

have been done on reduced scale elements or structure to assess the response and develop

hysteristic constitutive laws. On the other hand, computational models allowed the simulation

of real scale and more complex problems at a considerably lower cost.

The multi-physics open-source flexible software KRATOS [1] has been used as a simulation

tool, as it already contains a framework to simulate non-linear structures. KRATOS is an

open-source framework, written in C++ to allow the implementation of numerics to solve

engineering problems. It is written in a modular way to include collaboration and development

of researchers.

Objective

The objective of this thesis work is to implement the flexibility-based fiber reinforced concrete

element to analyze the response of the element to a dynamic loading, changing in time. The

application of the load is considered quasi-static, so the non-linearity lies solely in the material

laws of the concrete and the steel bars.

The element is a one dimensional elements that is discretized into sections, each section

having fibers. The fibers can have individual uniaxial stress-strain relationships. The element

stiffness is derived from the flexibility of the sections. The element implemented is based on

the work of Taucer [2], since it is the first original well derived, reliable, and computationally

efficient flexibility-based fiber beam-column element.

In chapter 2, the theory of non-linear FEM is introduced to solve the problem in hand, and

the Newton-Raphson method is discussed. Also, the implementation in KRATOS is briefly

discussed with two problems using non-linear truss elements. In chapter 3, the theory of the

flexibility based fiber beam-column element is shown, where the advantages of the current

element are discussed. Moreover, the formulation of the element based on the mixed method

is derived, and the element solution algorithm is extensively discussed. The constitutive laws

used in this element are explained in chapter 4 with their implementation algorithms. Finally,

numerical examples are discussed in chapter 6.
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2. Background Theory

2.1. Introduction to Non-Linear Finite Element

The Non-Linear Finite Element Method (NFEM) is a method to solve of Computational Me-

chanics problems. To introduce it, a classification of Mechanics is explained here. Mechanics

is the science of Physics that relates physical bodies to forces, displacements, and energy.

Mechanics can be subdivided into theoretical, applied or computational, where the problem

is solved numerically using a computer in the last one. Computational Mechanics can be

subdivided into branches based on the scale of the problem. Here, the interest is Continuum

Mechanics, where the material is assumed continuous. Moreover, Continuum Mechanics can

be divided into Statics, Quasi-Statics, and Dynamics. Furthermore, the response of the mate-

rial can be linear or non-linear. The non-linearity of the response could be geometrical (large

displacements), physical (material), etc. To solve this non-linear problem, many discretization

methods can be applied. Our interest is the Finite Element Method applied to a Continuum

Mechanical model of Non-Linear Quasi-Statics. This division of Mechanics is explained in the

following: [3]

Mechanics



Theoretical

Applied

Computational



Nanomechanics

Micromechanics

Continuum Mechanics


Statics

 Linear

Non-Linear

Dynamics

Particle Mechanics

· · ·

Essentially, a time invariant problem of Continuum Mechanics can be described by a partial

differential equation, which can be solved by means of the Finite Element Method, where

the physical space is discretized into elements of the same Parametric Space [4]. One of the

methods to derive a Finite Element solution to a problem is the Variational Formulation, which

can be solved using the Principal of Virtual Work, where in the weak form,
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∫
Ω
δW dΩ = 0 (2.1)

holds, where δW is the variation of the virtual work, and Ω is the solution domain. This

generally leads to a linear system of equations,

A · u = f, (2.2)

where u is the solution to be found. This system of equations can be reorganized to define a

residual, r, such that

r = A · u− f = 0. (2.3)

Using the stiffness-based displacement formulation [3] generally yields

r = K · u− f = 0, (2.4)

where r is the residual vector, K is the stiffness matrix, u is the displacement vector, and f

is the force vector. A solution u is obtained when the residual approaches zero meaning the

system is in equilibrium.

The proposed element is solved using Static Non-Linear Finite Element Method (FEM). The

non-linearity of the problems lies only in the material law. The concept of solving a non-

linear problem using FEM is explained here using the load-displacement curve, where the

solution is obtained by seeking a point on the equilibrium path. Since the equilibrium path is

non-linear, an iterative scheme is used until a point where the residual approaches zero is

obtained. A basic example of a non-linear equilibrium path is shown in Figure 1.

Lo
ad

Displacement

Equilibrium Path

pseudo-time

Figure 1 Non-linear load displacement curve example.
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2.1.1. Newton-Raphson
The method to find a point on the equilibrium used in this work is the commonly used Newton-

Raphson (NR) method, where the problem is linearized and solved iteratively. The methods

and the derivations in this chapter are explained in details in the lecture notes by Filippa [3].

Generally, the method is used to solve an equation f(x) = 0, where f(x) is a non-linear

function. The method linearizes the function using its gradient. In details, the solution can be

obtained by iteratively solving the linearized equation f̃(x) = 0 as:

f̃(x) = f(xk) + (xk+1 − xk)
df

dx

∣∣∣
xk
, (2.5)

where k is the iteration number. The only unknown in this equation is xk+1. Hence, the

equation is solved iteratively, until ||∆xk|| is below a certain prescribed tolerance, where

∆xk = xk+1 − xk.

The Newton-Raphson method can be easily applied to a non-linear Finite Element problem

by solving eq. (2.4) iteratively, so that the residual approaches zero. However, since the

solution is for an equilibrium point on a non-linear path, it involves solving for displacements as

well as loads, so there are more unknowns than equations. Consequently, another equation

must be added, namely the constraint equation C = 0. Different constraint lead to different

approaches. The three main approaches using the constraint are known as Load Control,

Displacement Control, and Arc-Length Control. The three approaches solve the equations:

r(u, λ) = 0, (2.6)

C(u, λ) = 0, (2.7)

where u is the displacement vector and λ is the load factor.

Load Control

The constraint for the load control is:

C(u, λ) = λk+1 − λ̂,

where λ̂ is a prescribed load factor.
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Displacement Control

The constraint for the displacement control is:

C(u, λ) = u
(i)
k+1 − û

(i), (2.8)

where the superscript is the selected controlled degree of freedom, and û(i) is the prescribed

displacement of the controlled degree of freedom.

Arc-Length Control

The constraint for the arc-length control is:

C(u, λ) = (Lk)
2 − (L̂)2,

where L̂ is the prescribed arc-length and the arc-length Lk at every iteration is

Lk =
√

∆uk ·∆uk + (∆λk)2.

lo
ad

fa
ct

or
,λ

displacement

λ̂

(a) Load control.

lo
ad

fa
ct

or
,λ

displacement
û(i)

(b) Displacement control.

lo
ad

fa
ct

or
,λ

displacement

L̂

(c) Arc-Length control.

Figure 2 Illustration of the different constraint approaches.

2.1.2. Newton-Raphson With Displacement Control Constraint
The chosen approach for this thesis is the displacement control, since it is able to solve the

physics of material softening in concrete fibers, explained later in section 4.2. In this section,

the method is derived for non-linear FEM generally. In every iteration, the residual and the

constraint are determined on the last iteration values of both the displacements and the load

factor, as in:

r(uk, λ) = Kk · uk − λkF = 0,

C(uk, λk) = u
(i)
k − û

(i) = 0.
(2.9)
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These equation are linearized using eq. (2.5) leading to:

r̃ = r(uk, λk) +
∂r

∂u

∣∣∣
k
∆uk +

∂r

∂λ

∣∣∣
k
∆λk = 0,

C̃ = C(uk, λk) +
∂C

∂u

∣∣∣
k
∆uk +

∂C

∂λ

∣∣∣
k
∆λk = 0,

(2.10)

where ∂r
∂u

∣∣∣
k

is the stiffness matrix at iteration k, Kk, and − ∂r
∂λ

∣∣∣
k

is the external load vector

at iteration k, qk. Using the displacement control constraint, ∂C∂u

∣∣∣
k

is a zero vector with 1 at

the controlled degree of freedom, and ∂C
∂λ

∣∣∣
k

is zero. Substituting these values into (2.10) and

reorganizing into a linear system of equations at each iteration leads to:


Kk −qk

∂C
∂u

∣∣∣
k

0

 ·


∆uk

∆λk

 = −


r(uk, λk)

u
(i)
k − û

(i)

 , (2.11)

where uk+1 = ∆uk + uk and λk+1 = ∆λk + λk.

2.1.3. Implementation of Displacement Control in KRATOS

The non-linear residual solver that solves eq. (2.4) is already implemented in KRATOS, so

the displacement control is implemented as a condition. A degree of freedom (DoF), the load

factor λ, is added to the node upon which the displacement control is applied. Then, the

local system, the Left Hand Side (LHS) and the Right Hand Side (RHS) of the condition are

assembled to the global system. Essentially, the displacement control condition consists of

two DoFs, the controlled DoF and the load factor. So, the local system is

LHS =


0 −F

1 0

 , RHS =


λk · F

û(i) − u(i)
k

 ,

where F is the applied external force. In this local system, the first DoF is the controlled DoF

and the second is the load factor on this DoF.

2.1.4. Examples On Displacement Control
The non-linear displacement control is demonstrated on the two snap-through problems, one

is a the benchmark case of two trusses snap-through modeled with one bar and a symme-

try condition shown in Figure 3(a) [5] and a more complicated case of the two dimensional

circular arch of trusses example introduced by [6] shown in Figure 4, where the trusses are

geometrically non-linear “Truss3D2N” in KRATOS.
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Two Bar Truss System

The system shown in Figure 3(a), is made using a geometrically non-linear truss element with

Young’s Modulus of 210× 109 and a cross-sectional area of 0.01. The solution using the load

control constraint and the displacement control constraint. The displacement control solution

shows the reduction of the stiffness matrix throughout the snap-through, so it describes the

effect more accurately.

(a) Problem setup. (b) Load-Displacement curve.

Figure 3 Two trusses snap-through problem. [5]

Two-Dimensional Circular Arch of Trusses

and Young’s modulus is 5×109 and the area is 0.01. The solution using displacement-control

and load control are shown in Figures 6 and 5. In this example, also, the displacement control

describes more accurately the snap-through effect and the reduction of the stiffness matrix.

Figure 4 Circular Arch truss system.
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(e) Displacement control. (f) Load control.

Figure 5 Evolution of the system.

Figure 6 Solution of circular Arch truss system.
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3. The Fiber Beam-Column Element

In this chapter, the theory of the flexibility-based fiber beam-column element is discussed.

First, the definition of the element, its degrees of freedom, and the formulation are presented,

where the necessary equations are derived. Then, the load stepping algorithm is discussed

extensively.

3.1. Brief History of Modeling of Reinforced Concrete

Throughout the history of FEM, many studies have been made to model reinforced concrete

columns under dynamic loading. Firstly, the lumped models were first introduced in [7],

where plastic hinges at the ends of the beam element were used to model bilinear moments.

Then, the element was improved in [8] to include multi-linear material behavior. Since then,

many improvements have been made on the lumped model, however, the inelastic deforma-

tion is only modeled at the ends of the element. Secondly, distributed non-linearity models

were introduced in [9], where the inelastic behavior is more accurately modeled throughout

the element, as the element essentially consists of cantilever beams, and the fixed ends

have inelastic rotational springs. One assumption is that the axial forces and the bending

moments are decoupled in this element. The inelasticity is solely modeled by the inelastic

springs. Next, an element that consists of multiple subdivided elements connected by inelas-

tic rotational springs was developed in [10], where static condensation is used to derive the

stiffness of the element. Thirdly, the early flexibility-based fiber model, depicted in Figure 7,

was proposed in [11], where the element consists of longitudinal uni-axial fibers. The element

being flexibility-based basically means that it derives its stiffness from the flexibility matrix of

the fibers using force interpolation functions. The main advantage of the flexibility-based ap-

proach is that the internal forces are exact regardless of the system non-linearities (as shown

later in section 3.4), leading to fewer elements needed to represent material non-linearity.

Consequently, the softening behavior can be solved in this approach, in contrast to stiffness

based elements which are less numerically stable while the material is softening duo to neg-

ative entries in the stiffness matrix. Moreover, the element-loads application can be direct

using the internal force interpolation functions [2]. The first element in [11] models only uni-

axial bending moments, which gave accurate results but had problems in convergence and

did not model any material softening. The model has been improved in [12] to include biaxial

bending moments, where the material softening was described and the non-linearity of the

curvature along the element was modeled. However, the element was an improvement to [11]

and was rather ad hoc, thus the theory is not general enough for further development. The

element proposed by [2] is the first original element to have a clear and a well derived theory,

and includes axial forces. Hence, it was chosen to be implemented in this thesis work. In the

next sections, the element is described and the solution algorithm is discussed.

9



3.2. Definition of the Element

The flexibility-based fiber element introduced in [2] is implemented through this thesis in the

open-source project KRATOS. This element is implemented to solve deformations that induce

static axial loads and bi-axial moments. Hence, the shear forces are beyond the scope of this

study. The element is formulated based on the flexibility approach so it handles the non-linear

curvatures as well as material softening.

x̄

ȳ

z̄
Concrete

Steel

Figure 7 Discretization of the fiber beam-column element.

The discretization of the element is shown in Figure 7. The element is a one dimensional line

in a 3D space cut into “control sections.” Each section is discretized in a 2D grid of uni-axial

fibers. Each fiber has its own uni-axial constitutive law, and the response of the section is

derived from the integration over the fibers. Each section is given a position on the element

as well as a weight, in order to integrate over sections to get element properties, based on the

Gauss-Lobatto rule. The difference to the conventional Gauss-Legendre quadrature rule, is

that the end points are included here, and it is accurate for polynomials of degree 2n−1. The

advantage to Gauss-Lobatto is that it includes the fixed-ends where the curvature is highly

non-linear. More on this quadrature rule is in section A.1 in the appendix.

It is noteworthy to mention the proposed element assumes small deformation and plane sec-

tions during the deformation. Moreover, the mixed formulation [13] is used, where both force

interpolation functions and deformation interpolation functions are used. However, a spe-

cial choice of deformation interpolation functions yields a flexibility-based approach, but the

derivation is based on the mixed approach to keep it in a general sense for a possibility of

further improvements. The following derivations are based on the work of Taucer, Spacone,

and Filippou in 1991 [2].

10



Advantages of the Current Element

The advantages of the element can be summarized in:

• It can model non-linear curvature along the element as well as material softening, because

of the use of the flexibility approach and the displacement control non-linear FEM.

• The Gauss-Lobatto includes the end-points where the curvature is highly non-linear.

• The element response is derived from uni-axial fibers that can have a constitutive law

independently.

• The generality of its derivation allows further improvements.

3.3. Definition of Degrees of Freedom and Forces

The element has globally 12 degrees of freedom, as it consists of two nodes, each node

having three displacements and three rotations. The global forces vector, P, is defined as

the axial forces followed by the moments of each node, and the global degrees of freedom

vector, p, is defined as the displacements followed by the rotations of each node. Locally, the

element has five degrees of freedom, one axial, and four bending moments. The local forces

of the element are shown in Figure 8.

x

y

z

x̄ȳ

z̄

Q

M2y

M1y

M1z

M2z

Figure 8 Element local forces.
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The local force vector Q of the element and local displacement vector q are defined as:

Q =



M1z

M2z

M1y

M2y

Q



q =



ϕ1z

ϕ2z

ϕ1y

ϕ2y

q



(3.1)

Similarly, the local section force vector D and local section deformation vector d are defined

as:

D =



Mz

My

N


d =



κz

κy

d


(3.2)

where the section parameters can be approximated from the element parameters using the

matrix of deformation interpolation a and the matrix of force interpolation functions b, as the

mixed approach is being used. The approximation is as follows:

d = a · q, (3.3)

D = b ·Q. (3.4)

The determination of the strains from the section deformations is a statically indeterminate

problem, since the section has typically more than two fibers. However, given the assump-

tions mentioned earlier in section 3.2 of small deformations as well as the assumption of the

section remaining plane and normal to the local x axis during the deformation, it can be safely

assumed that the relation between the fiber strains and the section deformations is linear, and

defined as follows:

εf = yf · d, (3.5)

where y is the direction vector of each fiber such that y = [ −y z 1 ]. The subscript f refers

to the fiber. This definition of the direction vector can be extended to include bond-slippage

or non-linearity, however that is beyond the scope of this study.
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3.4. Formulation of the Element

In this section, the formulation of the element is shown, using the principal of virtual force.

Also, the reduction from the mixed approach to the flexibility approach is shown. The fully

detailed derivation can be found in [2]. First, a mixed approach is followed such that the

equations

∆di(x) = a(x) ·∆qi, (3.6)

∆Di(x) = b(x) ·∆Qi (3.7)

hold, where ∆ denotes increments, and i the non-linear iteration. As described in Zienkiewicz

and Taylor’s Finite Elements book [13], with the application of principal of virtual force, the

weak form of the virtual work can be written as:∫ L

0
δDT (x) · [∆di(x)− fi−1(x) ·∆Di(x)] dx = 0, (3.8)

where the domain of integration, Ω, is the element that goes from 0 to the total length L, and

the integration is carried upon the aforementioned control sections, where f(x) is the sym-

metric flexibility matrix of the section. Inserting equations (3.6) and (3.7) into (3.8) yields:

∫ L

0
δQT · bT (x) · [a(x) ·∆qi − fi−1(x) · b(x) ·∆Qi] dx = 0. (3.9)

Reorganizing the equation and putting the element variables outside the integral results

δQT


[∫ L

0
bT (x) · a(x) dx

]
︸ ︷︷ ︸

T

·∆qi −
[∫ L

0
bT (x) · f(x) · b(x) dx

]
︸ ︷︷ ︸

Fi−1

·∆Qi

 = 0, (3.10)

where Fi−1 is the flexibility matrix of the element in the previous iteration and T is the matrix

that relates the two matrices of the interpolation functions. This equation has to be satisfied

with an arbitrary choice of virtual element force vector δQ, so it can be omitted from the

equation, yielding

T ·∆qi = Fi−1 ·∆Qi. (3.11)

Similarly, using the principal of virtual displacement, the weak form of the virtual work can be

written as: ∫ L

0
δdT (x) · [Di−1(x) + ∆Di(x)] dx− δqT ·QE

i = 0, (3.12)
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where QE is the external force vector. Inserting equations (3.6) and (3.7) into (3.12) and

reorganizing yields

δqT


[∫ L

0
aT (x) · b(x) dx

]
︸ ︷︷ ︸

TT

·Qi−1 −
[∫ L

0
aT (x) · b(x) dx

]
︸ ︷︷ ︸

TT

·∆Qi −QE
i

 = 0. (3.13)

This equation has to be satisfied with an arbitrary choice of virtual element deformation vector

δq, so it can be omitted from the equation, yielding

TT ·∆Qi = QE
i −TT ·Qi−1. (3.14)

Inserting the solution of eq. (3.11) for ∆Qi into eq. (3.14) results

TT · [Fi−1]−1 ·T ·∆qi = QE
i −TT ·Qi−1. (3.15)

Equation (3.15) is the matrix form of the weak formulation using the mixed approach of

non-linear FEM. Nonetheless, for this element, the deformation interpolation functions are

selected in a way to reduce mixed approach to the flexibility approach. Choosing a(x) =

fi−1(x) · b(x) · [Fi−1]−1 would result in the T to become the identity matrix, hence, reducing

eq. (3.15) to

[Fi−1]−1 ·∆qi = QE
i −Qi−1, (3.16)

where [Fi−1]−1 is the stiffness matrix of the previous iteration, and QE
i −Qi−1 is the unbal-

ance force vector, QU
i−1. Although (3.16) looks similar the stiffness approach, the stiffness

matrix of the element is obtained by inverting the flexibility matrix, which is obtained by the

flexibility matrices of the sections. Now, the choice of the force interpolation functions matrix

b is free. In this work, b(x) is chosen to obtain linear bending moments and constant axial

forces across the sections, such that

b =



x
L − 1 x

L 0 0 0

0 0 x
L − 1 x

L 0

0 0 0 0 1


. (3.17)

This leads to exact forces in case of no elements forces.
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Finally, combining eq. (3.16) with eq. (2.11) and generalizing it into the structure level with

multiple elements, the following holds
Ks

i−1 −PE

∂C
∂p

∣∣∣
i

0

 ·


∆pi

∆λi

 =


PU

i−1

C

 , (3.18)

where C is the displacement control constraint, and Ks is the stiffness matrix of the global

structure.

3.5. Uniaxial Fibers

So far, the element matrices are obtained by the integration over section matrices. In this

section, the section matrices are computed using the fiber variables.

The section flexibility matrix f is derived by inverting the section stiffness matrix, which is in

turn derived from and tangent moduli of the section uniaxial fibers. This can be written as:

k =



∑
Et ·A · y2 −

∑
Et ·A · y · z −

∑
Et ·A · y

−
∑
Et ·A · y · z

∑
Et ·A · z2

∑
Et ·A · z

−
∑
Et ·A · y

∑
Et ·A · z

∑
Et ·A


, (3.19)

where the summation is over the fibers. This can be written in short using cross product

k =
∑

Et ·A · yT · y, (3.20)

where the direction vector of each fiber is y = [ −y z 1 ]. The tangent modulus of each

fiber, Et, is calculated based on its constitutive law, using the strain value calculated as eq.

(3.5).

In a similar way, the section resisting forces DR are calculated as:

DR = yTf · σf ·A, (3.21)

where the section resisting forces can be transformed into the element local resisting forces

QR using eq. (3.4).
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3.6. Element Solution Algorithm

The algorithm for each load step involves two nested loops, a Newton-Raphson iteration loop

and an element equilibrium loop. In details, for every load step, Newton-Raphson iterations

are performed on the structure level until convergence, and for every Newton-Raphson itera-

tion, an element loop is performed on all elements until convergence.

Hereon, three superscripts are used to refer to each aforementioned loop. k is for the load

step, i is for the Newton-Raphson iteration, and j is for the element loop. The load stepping

loop for three load steps can be depicted in Figure 9 and Figure 10.

Algorithm 1 shows the outer loops of the load stepping and the NR iteration loop. First, the

structure is initialized, where the global stiffness matrix is computed. In each computation of

the stiffness matrix, the section stiffness matrices are first obtained using eq. (3.19), where

the tangent modulus of each fiber is initialized, then inverted to get the section flexibility

matrices, then globalized using the matrix of force interpolation functions matrix b such that

fglobal = bT · f · b. (3.22)

Finally, the element stiffness matrix is the inverse of the element flexibility matrix, which is

obtained from integrating over the sections, where the numerical integral is

F =
∑

sections

fglobal · wsec · detJ, (3.23)

where wsec is the numerical weight of the section based on the integration rule and the deter-

minant of the jacobian det J in this case is simply 0.5 · L, where L is the reference length.

After the initialization, the load stepping loop starts, where in each NR iteration, the change

of increments of displacements δ∆pk
i

is computed using eq. (3.18). Then, the elements

change of increments of deformations δ∆qk
i

is computed. Next, the element loop shown

in Algorithm 2 is performed till equilibrium of elements. Finally, the global stiffness matrix,

resisting forces, and unbalance forces are updated. The norm of the unbalance forces is

checked against a tolerance as a convergence check for the NR iteration.
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Algorithm 1: Load Stepping Algorithm

1 initialize
2 k ← 1

while k ≤ final load step do
3 i← 1; converged← false;

while converged == false & i ≤ max NR iterations do
4 solve eq. (3.18) for δ∆pk

i
and δ∆λk

i

∆pk
i ← ∆pk

i−1
+ δ∆pk

i
// ∆pk

0
= 0

∆λk
i ← ∆λk

i−1
+ δ∆λk

i
// ∆λk

0
= 0

λk
i ← λk−1 + ∆λk

i
// λk

0
= 0

5 for each element do
δ∆qk

i ← L ·∆pk
i

6-14 Perform element equilibrium loop (Algorithm 2)

15 Ks
ki ←

∑
LT ·Kki

j
· L

PR
ki ←

∑
L ·Qki

j

PU
ki ← λk

i
PE

k −PR
ki

16 if ||PU
ki|| < tol then

converged← true
finalize load step

else
k ← k + 1

Algorithm 2 shows the element loop. It starts after calculating the change of increments of

element deformations, δ∆qk
i
, as it is used to compute the change of increments of element

forces, δ∆Qki
j
, in the first iteration of the element equilibrium loop. Otherwise the element

deformation residuals vector of the previous iteration is used, ski
j−1

, where it is computed at

the end of the iteration using the integral over the section deformation residuals.

Next, for all the sections in the element, the change of increments of section forces can be

computed using eq. (3.4). Then, to compute the change of increments of section deforma-

tions, the residual of deformations vector of last iteration is added to the effect of the change

of increments of section forces of the current iteration, as in

δ∆dk
ij

= rk
ij−1

+ fk
ij−1
· δ∆Dki

j
. (3.24)

Then, eq. (3.5) is used to compute the strain of each fiber, where the uniaxial constitutive law

of the fiber is used to determine the stress as well as the tangent modulus. These parameters

are used in eq. (3.20) to compute the section stiffness matrix, and in eq. (3.21) to compute

the section resisting forces. Now, the section unbalance forces and deformation residuals can

be computed, and the element stiffness matrix and deformation residuals can be computed.

Finally, if all sections have reached equilibrium, meaningly the norm of the unbalance force is

below a certain tolerance, the element equilibrium loop is concluded.
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Algorithm 2: Element Loop Algorithm

6 j ← 1; elements_converged← false;
while elements_converged == false & j ≤ max element iterations do

for each element do
7 if j == 1 then

δ∆Qki
j
← Kki−1 · δ∆qk

i

else

δ∆Qki
j
← Kki

j−1
· ski

j−1

∆Qki
j
← ∆Qki

j−1
+ δ∆Qki

j
// ∆Qki

0
= 0

Qki
j
← Qk−1 + ∆Qki

j
// Q0 = 0

for each section do

8 δ∆Dki
j
← b · δ∆Qki

j

∆Dki
j
← ∆Dki

j−1
+ δ∆Dki

j
// ∆Dki

0
= 0

Dki
j
← Dk−1 + ∆Dki

j
// D0 = 0

9 δ∆dk
ij ← rk

ij−1
+ fk

ij−1
· δ∆Dki

j
// rk

i0
= 0

10 for each fiber do

δ∆εk
ij ← y · δ∆dk

ij

∆εk
ij ← ∆εk

ij−1
+ δ∆εk

ij
// ∆εk

i0
= 0

εk
ij ← εk−1 + ∆εk

ij
// ε0 = 0

apply constitutive law and get stress σ and tangent modulus Et

11 kk
ij ←

∑
Ef ·Af · yTf · yf

fk
ij ←

[
kk

ij
]−1

12 DR
ki
j
←
∑
σf ·Af · yTf

DU
ki
j
← Dki

j
−DR

ki
j

rk
ij ← fk

ij ·DU
ki
j

13 Fk
ij ←

∑
bT · fki

j
· b · wsec · det J

Kki
j
←
[
Fk

ij
]−1

14 if ||DU
ki
j
|| < element_tolerance ∀ sections then

elements_converged← true
else

j ← j + 1

sk
ij ←

∑
bT · rki

j
· det J
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(a) Element level.

(b) Section level.

Figure 9 Illustration of the three nested loops for three load steps on the element and the section level. [2]

19



(a) Element level.

(b) Section level.

Figure 10 Illustration of the change of parameters in one load step on the element and the section level. [2]
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3.7. Detailed Explanation of the Algorithm

The total algorithm to advance in load steps is shown in Algorithm 1 and Algorithm 2. Al-

gorithm 1 shows the loop of load steps as well as the loop of the NR iterations, where the

displacements, the stiffness matrix the resisting and unbalance forces are calculated, and

Algorithm 2 shows the loop of element equilibrium, where the element forces are calculated

based on the element displacements. Based on element forces, the section forces are cal-

culated, followed by section displacements, then, fiber strains are calculated. Given the fiber

strains, the uniaxial constitutive laws can be applied to get the material response of every

fiber, so that the section flexibility matrix, section resisting forces, section unbalance forces,

and section displacement residuals can be updated. Finally the element local stiffness matrix

can be computed, and the convergence can be checked with the section unbalance forces. If

all sections converged, the structure stiffness matrix, and resisting and unbalance forces can

be computed, where the structure unbalance forces are checked for the convergence of the

NR iteration. It is noteworthy to mention that the element and the section flexibility matrices

are used more than once in every iteration, so they are saved in memory instead of recom-

putation. Also, the increments of deformations and forces are changed in every iteration until

they converge, so they are saved as well, but the changes in increments are calculated and

not saved. Here follows the summary and explanation of each step:

1. The goal of the initialization is to compute the initial structure stiffness matrix. First,

all fibers are initialized so that the initial tangent modulus Et is assumed based on the

constitutive law. Then, for each section, the stiffness matrix are calculated using the

section fibers. Each section stiffness matrix, k, is computed using eq. (3.20), which

defines an integral over the fiber. After k is computed, the section flexibility matrix, f ,

which is the inverse of k, is computed and stored. Next, the element flexibility matrix,

F, is computed using an integral over section flexibility matrices, which is defined in eq.

(3.10). Numerically, the Gauss Lobatto rule is applied, where every section is given a

position and a weight, then,

F =

∫ L

0
bT (x) · f(x) · b(x) dx ≈

∑
sections

bT · f · b · wsec ·
L

2
, (3.25)

where f is the local section flexibility matrix and F is the element flexibility matrix.

The element local stiffness matrix, K which is simply the inverse of F, is computed

and stored. Finally, the structure tangent stiffness matrix, Ks, can be computed by

assembling the global element stiffness matrix. The global element stiffness matrix,

Kglobal is calculated as

Kglobal = L ·K · LT , (3.26)
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where L is a transformation of coordinates matrix. Since the element includes only

axial loading and biaxial bending, the 12× 5 matrix L is defined as

L =


e2
L

e2
L −e3

L −e3
L −e1

e3 0 e2 0 0

−e2
L −e2

L −e3
L −e3

L −e1

0 e3 0 e2 0

 , (3.27)

where e1, e2, and e3 are the unit vectors that describe the element’s local coordinates

system expressed as 3 × 1 column vectors, and 0 is a 3 × 1 column vector of zeros.

The first three rows of L are to transform the forces of the first node, the second three

rows are for the moments of the first nodes, the third three rows are for the forces of

the second node, and the final three rows are for the moment of the second node. L is

the undeformed length of the element.

2. The index of the load steps, k, is set to one, and the load stepping loop starts.

3. The index of the NR iterations, i is set to one, and the NR iteration loop starts.

4. The linear system of equations derived in eq. (3.18), which can be written in this loop

as 
Ks

ki−1 −PE
k

∂C
∂p

∣∣∣
i

k
0

 ·

δ∆pk

i

δ∆λk
i

 =


PU

ki−1

Ck

 , (3.28)

where Ks is the structure stiffness matrix after applying the Dirichlet boundary condi-

tions and Ks
k0

is the initialized matrix in step 1, PE is the external load vector, PU
ki−1

is the unbalance force vector and PU
k0

is a zero vector, C is the displacement con-

trol constraint defined in eq. (2.8), and ∂C
∂p

∣∣∣
i

k
is simply a zero vector with a value of

one at the controlled DoF. The linear system of equations is solved for the change of

increments of displacements, δ∆pk
i
, and the change of increments of the load factor,

δ∆λk
i
. Then, the increments are calculated as in

∆pk
i

= ∆pk
i−1

+ δ∆pk
i
, (3.29)

∆λk
i

= ∆λk
i−1

+ δ∆λk
i
, (3.30)

where ∆pk
0

= 0 and ∆λk
0

= 0, and the load factor is incremented, λki = λk + ∆λk
i
,

where λk0
= 0.

5. The change of increments of the element local deformations is then calculated from the

structure using the transformation matrix, L,

δ∆qk
i

= L ·∆pk
i
. (3.31)
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δ∆qk
i

is updated only once after every NR iteration since it will be used only once in

the first element equilibrium iteration. Also, ∆qk
i and qk

i are not needed.

6. The index of the element equilibrium iterations, j is set to one, and the element equi-

librium loop starts.

7. For every element, the change of increments of element forces is calculated as

δ∆Qki
1

= Kki−1 · δ∆qk
i

(3.32)

if j = 1. Otherwise, if j > 1, then

δ∆Qki
j

= Kki
j−1
· ski

j−1
, (3.33)

where s is the displacement residual, since the change of increments of element defor-

mations is not updated in the element equilibrium iterations. Then, the section incre-

ments of forces, ∆Qki
j
, and the section forces, Qki

j
, are calculated as

∆Qki
j

= ∆Qki
j−1

+ δ∆Qki
j
, (3.34)

Qki
j

= Qk−1 + ∆Qki
j
, (3.35)

where ∆Qki
0

= 0 and Q0 = 0.

8. For every section in the element, the section forces, Dki
j
, are calculated from the

element change in increments of forces, δ∆Qki
j
, using the force interpolation functions

matrix, b, using

δ∆Dki
j

= b · δ∆Qki
j
, (3.36)

∆Dki
j

= ∆Dki
j−1

+ δ∆Dki
j
, (3.37)

and Dki
j

= Dk−1 + ∆Dki
j
, (3.38)

where ∆Dki
0

= 0 and D0 = 0.

9. Using the stored section flexibility matrix of the last iteration, fki
j−1

, and the residual of

section displacements of the last iteration, rki
j−1

, the change of increments of section

deformations can be calculated as

δ∆dk
ij

= rk
ij−1

+ fk
ij−1
· δ∆Dki

j
, (3.39)

where rk
i0

= 0, ∆dk
i0

= 0, and d0 = 0.

10. For every fiber in the section, the strain, εki
j
, can be directly calculated as in eq. (3.5).
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11.

δ∆εk
ij

= yf · δ∆dk
ij
, (3.40)

∆εk
ij

= ∆εk
ij−1

+ δ∆εk
ij
, (3.41)

and εk
ij

= εk−1 + ∆εk
ij
, (3.42)

where ∆εk
i0

= 0 and ε0 = 0. Then, the uniaxial material law is applied on the fiber to

obtain the tangent modulus, Et and the stress σ.

12. The section stiffness matrix, kki
j

is then updated using eq. (3.20), and the section

flexibility matrix fk
ij is computed and restored.

13. The resisting forces can be calculated from the fiber stresses as in

DR
ki
j

=
∑

σf ·Af · yTf (3.43)

from eq. (3.21). Then, the unbalance forces is simply the difference between the

section forces calculated in step 7 and the resisting forces,

DU
ki
j

= Dki
j
−DR

ki
j
. (3.44)

Finally, the section displacement residuals is calculated based on the updated flexibility

matrix and the unbalance forces as in

rk
ij

= fk
ij ·Dk

U
ij

(3.45)

14. Now, the element matrices can be updated. The element flexibility, Fki
j
, is updated

using eq. (3.25) then inverted to obtain the element local stiffness matrix, which is

stored.

15. Element equilibrium is checked by calculating the L2 norm of the section unbalance

forces ||DU
ki
j
||. If ||DU

ki
j
|| < tolerance for all of the sections of the element, then

equilibrium is achieved. Otherwise, iterations are needed, so the element deforma-

tion residuals, ski
j
, is computed as a numerical integral over the section deformation

residuals

sk
ij

=

∫ L

0
bT (x) · rki

j
(x) dx ≈

∑
sections

bT · rki
j
· wsec · detJ, (3.46)

j is incremented by one, and steps 7 through 15 are repeated.
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16. Now, the structure stiffness matrix, Ks can be updated, using an assembly of the ele-

ment global stiffness matrices as in eq. (3.26)

Ks
ki =

∑
elements

L ·K · LT . (3.47)

The structure resisting forces vector, PR, is an assembly of the element resisting forces

such that

PR
ki =

∑
elements

L ·Qki
j
. (3.48)

Finally, the structure unbalance forces, PU
ki, is calculated as

PU
ki = λk

i
PE

k −PR
ki. (3.49)

17. NR convergence is checked by calculating the L2 norm of the structure unbalance

forces ||PU
ki||. If ||PU

ki|| > tolerance, then convergence is NOT achieved and more

NR iterations are needed, so i is incremented by one and steps 4 through 17 are

repeated. Otherwise, convergence is achieved, so the following is set:

∆pk
i

= 0

∆λk
i

= 0

pk = pk
i−1

+ ∆pk
i

∆Qki
j

= 0 ∀ elements

Qk = Qki
j
∀ elements

∆Dki
j

= 0 ∀ sections

Dk = Dki
j
∀ sections

∆εk
ij

= 0 ∀ fibers

εk = εk
ij ∀ fibers

current material parameters are set to converged ∀ fibers

Finally, k is incremented by one and the new displacement control constraint is cal-

culate. If k < maximum load steps, steps 3 through 17 are repeated, otherwise, the

solution is concluded.
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4. Constitutive Laws

As per discussed in last section, explicit uniaxial material laws can be used, as the only

needed part is the uniaxial stress-strain relationship. Exactly, two material laws are imple-

mented in this work and explained in this chapter, one for the concrete fibers and one for

the steel fibers. As mentioned in section 3.3, based on the definition of the fiber direction

vector, the interaction between the fibers is out of the scope of this study. Consequently, the

constitutive laws can be defined independently.

4.1. Steel Uniaxial Constitutive Law

Menegotto-Pinto [14] is the material law used for the steel fibers. It models kinematic hard-

ening, i.e. the reduction of compressive stiffness in tensile hardening and vice versa (transla-

tion of yield line in the stress space) [15], where the hardening ratio b is defined by:

b =
E∞
E

, (4.1)

where E is Young’s modulus and E∞ is the plastic modulus, shown in figure 11.

(σ0
0 , ε00)

(σ1
r , ε1r)

(σ1
0 , ε10)

(σ2
r , ε2r)

(σ2
0 , ε20)

E

E∞
1

1

Figure 11 Stress-strain relationship of steel fibers.
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The stress σ and strain ε are calculated using the normalized stress σ∗ and the normalized

strain ε∗, which are defined as

σ∗ =
σ − σr
σ0 − σr

, (4.2)

ε∗ =
ε− εr
ε0 − εr

, (4.3)

where σr and εr are the stress and strain at the last load reversal, respectively, and (σ0, ε0)

is the intersection point of the two asymptotes E and E∞. To calculate the stress at any point

of loading/unloading, (4.2) is used, where:

σ∗ = b · ε∗ +
(1− b) · ε∗(

1 + (ε∗)R
)1/R

, (4.4)

ε/εy

σ
σy

ξ1

ξ2

R0

R1

R2

Figure 12 The Bauschinger effect in the steel fibers described by R and ξ.

where R represents the transition in between the moduli, that changes after every material

reversal. It represents the Bauschinger effect. R is calculated as:

R(ξ) = R0 −
a1 · ξ
a2 + ξ

, (4.5)

where R0 is the initial transition variable, a1 and a2 are experimentally determined parame-

ters, and ξ is the difference, normalized by the yield strain, in the strain of the current moduli

intersection point and the previous max. or min. strain. The value of ξ and the effect of R on

the curvature of the transition zone are shown in Figure 12, where R2 < R1 < R0.
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Finally, the stress σ can be simply calculated based on (4.2) as:

σ = σ∗ · (σ0 − σr) + σr (4.6)

The tangent modulus Et then can be calculated as:

Et =

(
σ0 − σr
ε0 − εr

)
·
{
b+ (1− b) ·

[(
1 + (ε∗)R

)−1/R
− (ε∗)R ·

(
1 + (ε∗)R

)−1− 1
R

]}
(4.7)

4.2. Concrete Uniaxial Constitutive Law

Kent-Park [16] is the material law used to model the concrete fibers. It models uni-axial

concrete only under compression. The stress σ is defined as:

σ =



0 if ε > 0

f ′c ·
[
2 ·
(
ε
ε0

)
−
(
ε
ε0

)2
]

if 0 > ε ≥ ε0

f ′c · [1− Z · (ε− ε0)]] if ε0 > ε ≥ εu

0.2 · f ′c if εu > ε

(4.8)

where f ′c is the concrete compressive cylinder strength, ε0 is the strain at the maximum stress,

εu is the ultimate strain, and Z is the strain softening slope. Z can be determined as: and K

and Z can be calculated as:

Z =
0.5

3
4ρs

√
h′

sh
+ 3+0.002f ′c

f ′c−1000 − ε0

where ρs is the ratio of the volume of hoop reinforcement to the volume of concrete core

measured to outside of stirrups, h′ is the width of concrete core measured to outside of

stirrups, and sh is the center to center spacing of stirrups or hoop sets. In this work, f ′c,

ε0, and εu are assumed, as they are sufficient for the model to calculate the stress-strain

relationship.
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The hysteretic behavior is then described by a straight line connecting the unloading strain εr
(strain reversal) to the plastic strain εp following:

εp
εr

=


0.145 ·

(
εr
ε0

)2
+ 0.13 · εrε0 if εrε0 < 2

0.707 ·
(
εr
ε0
− 2
)

+ 0.834 if εrε0 ≥ 2

(4.9)

Equations (4.8) and (4.9) are depicted in Figure 13. In this model, εp is models a compres-

sive crushing phenomenon. Once the material is loaded beyond its yield strength, εp starts

increasing. The unloading of the material is assumed linear until the strain is at εp. Any strain

below εp resembles an open crack in the material, hence, zero stress and zero stiffness.

(εr, σr)

εp

un
lo

ad
in

g
pa

th

Figure 13 Stress-strain relationship of concrete fibers.

4.3. Implementation of the Constitutive Laws

As mentioned in section 3.6, in each iteration of the element equilibrium loop in Algorithm

2, the strain of each fiber is computed. After which, the tangent modulus as well as the

stress can be calculated based on the previous sections in this chapter. After every change

in the strain in every iteration, εki
j
, the constitutive law checks for load reversal and calcu-

lates the tangent modulus and the stress accordingly. The implementation of the constitutive

laws followed is based on a previous implementation in the “Open System for Earthquake

Engineering Simulation” software, OpenSees. [17]
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4.3.1. Algorithm for Menegotto-Pinto
For the steel material law, three extra history material variables are used, namely, εmax, εmin,

and εp. Another history variable is defined as the loading index, I, which is 0 at the start, 1 at

the strain increase, 2 at the strain decrease, and 3 at the strain being unchanged. To define

the material, six variables are needed, namely, Young’s Modulus E, the yield strength σy, the

hardening ratio b, the initial transition parameter R0, and the two transition parameters a1 and

a2. The yield strain can then be calculated as εy = σy/E.

Algorithm 3: Steel Material Response

1 ∆ε← εk
ij − εk−1

2 current history variables← converged history variables

3 if Iki
j

== 0 or Ik
ij == 3 then

if ∆ε ≈ 0 then
return;

else

εmax
ki
j
← εy; εmin

ki
j
← −εy

if ∆ε < 0 then

Ik
ij ← 2; ε0

ki
j
← εmin

ki
j
; σ0

ki
j
← −σy; εp

ki
j
← εmin

else

Ik
ij ← 12; ε0

ki
j
← εmax

ki
j
; σ0

ki
j
← σy; εp

ki
j
← εmax

4 if Iki
j

== 2 and ∆ε > 0 // Load reversal

then

Ik
ij ← 1; εr

ki
j
← εr

k−1; σr
ki
j
← σr

k−1

εmin
ki
j
← min(εmin

ki
j
, εk−1); εp

ki
j
← εmax

ki
j

ε0
ki
j
← σy−E∞−σrk

ij
+E·εrk

ij

E−E∞

σ0
ki
j
← σy + E∞ · (ε0

ki
j
− εy)

if Iki
j

== 1 and ∆ε < 0 // Load reversal

then

Ik
ij ← 2; εr

ki
j
← εr

k−1; σr
ki
j
← σr

k−1

εmax
ki
j
← max(εmax

ki
j
, εk−1); εp

ki
j
← εmin

ki
j

ε0
ki
j
← −σy+E∞−σrk

ij
+E·εrk

ij

E−E∞

σ0
ki
j
← −σy + E∞ · (ε0

ki
j

+ εy)

ξ ←
∣∣∣ εplastic−ε0

εy

∣∣∣
Compute R as in eq. (4.5)
Compute ε∗ as in eq. (4.3)
Compute σ∗ as in eq. (4.4)
Compute σ from eq. (4.2)
Compute Et from eq. (4.7)
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To explain Algorithm 3 in the context of the nested loops mentioned discussed in section

3.7, the material response determination step comes in step 10 in the element equilibrium

iteration loop in section 3.7 above. So, at every iteration, after setting the strain of the fiber, ε,

the following takes place:

1. The strain difference, ∆ε is calculated as the difference between the current strain,

εk
ij , and the converged strain from last load step, εk−1.

2. The current history variables are reset with the values of the converged variables,

meaning:

εmax
ki
j

= εmax
k−1; εmin

ki
j

= εmin
k−1

εp
ki
j

= εp
k−1; ε0

ki
j

= ε0
k−1

εr
ki
j

= εr
k−1; ε0

ki
j

= ε0
k−1

εr
ki
j

= εr
k−1; σ0

ki
j

= σ0
k−1

σr
ki
j

= σr
k−1; Ik

ij
= Ik−1

3. In case the material is still in the initialization phase or the strain is unchanged, I = 0

or I = 3, the following happens, otherwise, the next step is followed. If the strain

difference, ∆ε is nearly zero, the strain is considered not changed and the material

response is concluded. If not, the current loading index, Iki
j
, and the intersection

point of the elastic and plastic moduli, determined by ε0
ki
j

and σ0
ki
j
, and εp

ki
j

are

calculated. The values of max and min strains are used which are set as the positive

and negative values of the yield strain, εy, respectively.

• If strain is decreasing (∆ε < 0):

Ik
ij

= 2; ε0
ki
j

= εmin
ki
j
; σ0

ki
j

= −σy; εp
ki
j

= εmin
ki
j
;

• If strain is increasing (∆ε > 0):

Ik
ij

= 1; ε0
ki
j

= εmax
ki
j
; σ0

ki
j

= σy; εp
ki
j

= εmax
ki
j
;

4. In this step, the load reversal is checked. There are two cases of load reversal, ei-

ther the strain was increasing and stared decreasing or vice versa. If so, the reversal

strain and stress, the intersection point of the elastic and plastic moduli, and εpk
ij are

updated.
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• If the strain was decreasing and starting increasing (Iki
j

= 2 and ∆ε < 0k
ij

):

Ik
ij

= 1; εr
ki
j

= εk−1; σr
ki
j

= σk−1;

εmin
ki
j
← min(εmin

ki
j
, εk−1); εp

ki
j

= εmax
ki
j
;

ε0
ki
j

=
σy − E∞ − σrk

ij
+ E · εrk

ij

E − E∞
; σ0

ki
j

= σy + E∞ · (ε0
ki
j
− εy)

• If the strain was increasing and starting decreasing (Iki
j

= 1 and ∆ε > 0k
ij

):

Ik
ij

= 2; εr
ki
j

= εk−1; σr
ki
j

= σk−1;

εmax
ki
j
← max(εmax

ki
j
, εk−1); εp

ki
j

= εmax
ki
j
;

ε0
ki
j

=
−σy + E∞ − σrk

ij
+ E · εrk

ij

E − E∞
; σ0

ki
j

= −σy + E∞ · (ε0
ki
j

+ εy)

5. The value ξ is calculated as

ξ =

∣∣∣∣εp − ε0

εy

∣∣∣∣ .
6. The tangent modulus and the stress are updated here. Equations (4.5), (4.3), (4.4),

(4.2), and (4.7) are used consecutively to compute the transition parameter R, the

normalized strain, ε∗, the normalized stress, σ∗, the current stress σki
j

and the current

tangent modulus Etk
ij

, respectively.

Finally, if the structure has converged as in step 17 in section 3.7, all the converged history

variables are set as the current variables, meaning:

εmax
k = εmax

ki
j
; εmin

k = εmin
ki
j

εpl
k = εpl

ki
j
; ε0

k = ε0
ki
j

εr
k = εr

ki
j
; ε0

k = ε0
ki
j

εr
k = εr

ki
j
; σ0

k = σ0
ki
j

σr
k = σr

ki
j
; Ik = Ik

ij

4.3.2. Algorithm for Kent-Park
For the concrete material law, one extra history material variables are added, namely, the

unload slope S. To define the material, four variables are needed, namely, the compressive

yield strength fc′, the yield strain ε0, the ultimate strain εu, and the confinement factorK. The

algorithm for the material response is shown in Algorithm 4.
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Algorithm 4: Concrete Material Response

1 ∆ε← εk
ij − εk−1

2 current history variables← converged history variables
3 if ∆ε ≈ 0 then return;

if ε > 0 then σ ← 0; Et ← 0; return;

4 if εki
j
< εk−1 then

5a if εki
j
< εr

ki
j

then

εr
ki
j
← εk

ij

Compute σki
j

as in eq. (4.8)

Compute Etk
ij

εtemp ← min(εr
ki
j
, εu)

Compute εpk
ij as in eq. (4.9) using εtemp as εr

Sk
ij ← σk

ij
/ (εr

ki
j
− εpk

ij
)

5b else if εki
j
< εp

ki
j

then

σk
ij ← Sk

ij · (εrk
ij − εpk

ij
)

Et
ki
j
← Sk

ij

5c else

σk
ij ← 0

Et
ki
j
← 0

6 else if εki
j
< εp

ki
j

then

σk
ij ← Sk

ij · (εrk
ij − εpk

ij
)

Et
ki
j
← Sk

ij

else

σk
ij ← 0

Et
ki
j
← 0

To explain Algorithm 4 in the context of the nested loops mentioned discussed in section

3.7, the material response determination step comes in step 10 in the element equilibrium

iteration loop in section 3.7 above. So, at every iteration, after setting the strain of the fiber, ε,

the following takes place:

1. The strain difference, ∆ε is calculated as the difference between the current strain,

εk
ij , and the converged strain from last load step, εk−1.
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2. The current history variables are reset with the values of the converged variables,

meaning:

εr
ki
j

= εr
k−1; εp

ki
j

= εp
k−1

σk
ij

= σk−1; εk
ij

= εk−1

Sk
ij

= Sk−1; Et
ki
j

= Et
k−1

3. If the strain difference, ∆ε is nearly zero, the strain is considered not changed and the

material response is concluded. Also, if the new strain, εki
j
, is positive, the stress and

the tangent modulus are set to zero, because it is assumed that the concrete material

has zero tensile stiffness. Also the material response would be concluded.

4. There are three cases, the material goes further into compression, goes towards ten-

sion, or goes further into tension. The is checked with the values of the current strain,

εk
ij , and the current plastic strain, εpk

ij .

5. If the current strain is less than the converged strain, εki
j
< εk−1, the material is going

further into compression. The material going into compression can also be subdivided

into three different cases, loading, reloading, or cracked.

a. If the current strain is less than the current reversal strain, εki
j
< εr

ki
j
, loading

is happening, which could be on the open-crack path, the reloading path or the

loading path (cases 1, 2, and 3 in Figure 14). So, the reversal strain is set as the

current strain, εrk
ij ← εk

ij , then as in eq. (4.8):

• if 0 > εk
ij
> ε0 =⇒ Et

ki
j

= 2·f ′c
ε0k

ij
·
[
1−

(
ε
ε0

)]
and σki

j
= f ′c ·

[
2 ·
(
ε
ε0

)
−
(
ε
ε0

)2
]

• if ε0 > εk
ij ≥ εu =⇒ Et

ki
j

= f ′c−0.2f ′c
ε0−εu

and σki
j

= f ′c + Et
ki
j
· (εki

j
− ε0)

• if εu > εk
ij

=⇒ Et
ki
j

= 0 and σki
j

= 0.2f ′c

Then, the unloading slope, Ski
j
, and the plastic strain, εpk

ij , are updated. Eq.

(4.9) is used to update the plastic strain, εpk
ij . The unloading slope is calculated

as

Sk
ij

=
σk

ij

εrk
ij − εpki

j

34



b. If the current strain is larger than the reversal but smaller than the plastic strain,

εr
ki
j
< εk

ij
< εp

ki
j
, reloading is happening (case 4 in Figure 14). So then

simply the tangent modulus is the unloading slope, Etk
ij

= Sk
ij , and the stress

can be calculated as

σk
ij

= Sk
ij · (εki

j
− εpk

ij
)

c. If the current strain is larger than the plastic strain, εki
j
> εp

ki
j
, that means the

material has an open crack, which has zero stiffness, i.e. stress and tangent

modulus are zero (case 5 in Figure 14).

6. If the current strain is bigger than the converged strain and less than the current plastic

strain, εk−1 < εk
ij
< εp

ki
j
, the material is going towards tension but on the unloading

path (case 6 in Figure 14), so the tangent modulus is the unloading slope,Etk
ij

= Sk
ij ,

and the stress is

σk
ij

= σk−1 + Sk
ij · (εki

j
− εk−1).

Otherwise, the material is going towards tension but the crack is open so the stiffness

is zero, i.e. stress and tangent modulus are zero (case 7 in Figure 14).

Finally, if the structure has converged as in step 17 in section 3.7, all the converged history

variables are set as the current variables, meaning:

εr
k = εr

ki
j
; εp

k = εp
ki
j

σk = σk
ij

; εk = εk
ij

Sk = Sk
ij

; Et
k = Et

ki
j

1

2

3

4

6

7 5

Figure 14 Different cases of material state determination of concrete fibers.
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5. Code Structure

The code used to implement the element uses the objective oriented programming method,

in which, the code is divided into classes. Each class has its own attributes and methods,

to allow a modular way of programming and to allow further improvements. It also uses

inheritance, where the fiber beam-column element could inherit from a base class element to

use its features. Also, the uniaxial constitutive laws could also have a base class of shared

methods and attributes.

In general, the element consists of an object of a class. This object has a list of the sections

as an attribute, because it derives its properties from them. Also, it has the methods to get

and update the matrices of the element, and to iterate until the equilibrium of the element.

Similarly, the object section has a list of the fibers as an attribute, because it derives its

properties from them. It also has methods to get and update the section matrices from the

fibers. Last but not least, each object of the class fiber has an object of the uniaxial material

that defines the stress-strain relationship that could be either concrete material of steel

material. These classes are shown in Figure 15.

The Python as a stand-alone code allows more flexibility in the implementation, hence it was

chosen at the beginning to develop an element that gives accurate results, where perfor-

mance is not a priority. This code is made in a way that can be easily extendible for multiple

elements, however, only one elements test cases have been carried on. In the Python code,

the main file is to construct the structure with all its elements, section, fibers and material

laws, prescribe the displacement in the current load step, and to advance in load steps using

the NR algorithm. Structure is a class to hold the nodes, elements, Dirichlet and Neumann

boundary conditions, the system stiffness matrix and resisting forces, the unbalance forces,

and the increments and the values of the displacements and the load factor. It has methods

to add the elements and the boundary conditions.

The method Initialize() initializes all the elements, which in turn initializes all the sections,

fibers and materials, to update the stiffness matrix of the structure. Then, the method solve_

NR_iteration() is called, which calls the state_determination() in each class consecutively. If

the NR iteration has converged, the method finalize_load_step() is called in each function.

The code structure for KRATOS, however, does not include the structure class, as it already

contains what generates the global system and relates the elements and condition. It also

contains the NR iteration algorithm. The difference is that the state determination function in

the element is called FinalizeNonLinearIteration(), to be called after every iteration.
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1..*

1..*

1..*

1

1

Structure

nodes
elements
Dirichlet_conditions
Neumann_conditions

load_factor_increments
load_factor
conv_load_factor
displacement_increments
displacement
conv_displacement

stiffness_matrix
resisting_forces
unbalance_forces

initialize()
solve_NR_iteration()
check_NR_convergence()
finalize_load_step()

Element

sections

force_increments
forces
conv_forces
deformation_residuals

stiffness_matrix
coords_transformation_matrix

initialize()
get_global_stiffness_matrix()
get_global_resisting_forces()
update_local_stiffness_matrix()
state_determination(chng_disp_incr_str)
finalize_load_step()

Section

fibers
tolerance

position
weight

force_increments
forces
deformation_residual
unbalance_forces

flexibility_matrix
b_matrix

initialize()
get_global_flexibility_matrix()
get_resduals()
state_determination(chng_def_incr_ele)
finalize_load_step()

Fiber

uniaxial_material_law

y
z
area

strain_increments
strain
conv_strain

initialize()
state_determination(chng_def_incr_sec)
finalize_load_step()

UniaxialConcreteMaterial

fc
strain_0
strain_ult

strain
stress
Et strain_r
strain_p
unload_slope

update_strain(fiber_strain)
finalize_loadstep()

UniaxialSteelMaterial

E
b
R_0
fy
a1
a2

strain
stress
Et strain_0
stress_0
strain_r
stress_r
strain_pl
strain_max
strain_min
unload_slope

update_strain(fiber_strain)
finalize_loadstep()

Figure 15 Code Structure UML diagram
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6. Numerical Results

6.1. Example 1: Moment-Curvature

The Fiber Beam-Column Element was implemented in a stand-alone Python code [18] as well

as in KRATOS. A test case has been done to validate the element based on an expirement

carried out by Kent in [16] and simulated as well in [2]. The problem is a cantilever beam

of 9 ft. span clamped from one edge and is free from the other edge. The reinforcement

consists of two bars at the top and two bars at the bottom of 1
2

′′ diameter with a concrete

cover of 1′′. The beam is loaded statically and cyclically to failure. The beam cross-section

and discretization can be shown in Figure 16, while the beam is discretized into four sections.

The material parameters are summarized in Table 1. The concrete fibers inside the perimeter

of the steel fibers are considered confined, and the outer ones are non-confined.

8′′

415
16

′′

φ1
2

′′

1′′

(a) Experiment (b) Discretization

Figure 16 Beam cross-section of Example 1.

The experimental moment-curvature result from the article by Kent is shown in Figure 17(a)

and the result using KRATOS is shown in Figure 17(b). The load step size used here is 0.4

and the tolerance value used for convergence is 10−9.

As depicted in Figure 17(b), the Python code results are close to the experimental data. How-

ever, the results of the element implemented in KRATOS are erroneous due to a convergence

issue. The element with the explained constitutive laws, Menegotto-Pinto and Kent-Park, did

not converge even with a high tolerance value of the element equilibrium loop. The problem

could be in the implementation of the constitutive laws as the solution would start diverging

when the load starts reversing in the fibers. The converged result obtained and and shown
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(a) Confined Concrete

f ′c [ksi] ε0 εu

6.95 0.0027 0.0381

(b) Unconfined Concrete

f ′c [ksi] ε0 εu

6.95 0.0027 0.00292

(c) Steel

E b σy [ksi] R a1 a2

29000 0.0042 48.4 20 18.5 0.0002

Table 1 Material parameters of Example 1.

in Figure 17(b) is with a simplified concrete constitutive law where the softening effect is dis-

missed and the concrete is assumed to be elastic and fully plastic in compression, and has a

zero stiffness in tension. This would result in reduction of the whole element tangent stiffness

as can be seen in the figure. Nonetheless, the Python code results are more accurate and

therefore validates the implementation for this test case. Moreover, a test for the step size

and number of sections is shown in Figure 18, where the x-axis is the controlled displace-

ment of the free end and the y-axis is the applied load factor, where the load is 1 kip. One

can notice that refining the step size would lead to a better solution but the pattern does not

change. However, increasing the number of sections leads to a more accurate solution. In

the simulation with three sections, the solutions differs to the experiment, and the harden-

ing of the steel fibers is not well modeled. With increasing number of sections, the solution

converges, but the computational complexity increases as smaller step sizes are needed to

reach convergence of the element equilibrium. Here, for 10 sections and 20 sections, a step

size of 0.05 was used.

39



(a) Experiment. [16]

(b) Simulation using the Python code.

Figure 17 Moment on the clamped-end against Curvature on the free end of Example 1.
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(a) Different load step sizes.

(b) Different number of sections.

Figure 18 Load-Displacement plot of Example 1 using the Python code.
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6.2. Example 2: Uni-axial Bending

This example simulates the uniaxial bending effect of a cantilever beam. The beam spans

71′′, and is clamped from one end and free from the other. An axial load is statically applied

on the free end and repeated cyclically until failure. The experiment is explained as the R-1

cantilever beam in the paper by Ma et. al. [19], where the experiment result is shown here

in Figure 20. The beam cross-section as described in the paper is shown in Figure 19(a),

where the cross-section shown is not doubly symmetric as in Example 1. The concrete cover

is 1′′ from the bottom, 2′′ from the top, and 0.75′′ from the sides. The beam is 16′′ deep and

9′′ wide. The steel reinforcement consists of three #5 (0.625′′ diameter) in the bottom and

#6 (0.75′′ diameter) in the top ASTM A615M Grade 60 rebars. The discrete beam element

is sliced into 4 section, where each section is discretized as in 19(b), where it consists of 15

confined concrete fibers and 4 unconfined fibers. The material parameters used for the steel

and the concrete constitutive laws are shown in Table 2.

16′′

9′′

φ0.75′′2′′

φ0.625′′

1′′

0.75′′

(a) Experiment (b) Discretization

Figure 19 Beam cross-section of Example 2.

The result of the experiment is shown in Figure 20, where the result of the simulations by the

paper by Taucer [2] and the result of the Python code are in Figure 21. Here, the results of the

simulation differ from the experiment due to the effect of bars pull-out and shear deformations,

which are not accounted for in this model. This shows in the deformation of the cycles after

yield of the fibers.

42



(a) Confined Concrete

fc
′ [ksi] ε0 εu

5.43 0.00214 0.069

(b) Unconfined Concrete

fc
′ [ksi] ε0 εu

5.07 0.002 0.003

(c) Steel

E b σy [ksi] R a1 a2

29000 0.0085 66.5 20 18.5 0.0002

Table 2 Material parameters of Example 2.

Figure 20 Experimental Load-Displacement plot of Example 2. [19]

43



(a) Original section.

(b) Coarse section.

Figure 21 Load-Displacement plot of Example 2.
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6.3. Effect of the Discretization

The effect of the section discretization using uniaxial fiber can be shown in Figure 22 where

the simulation of Example 1 was carried on using two different discretization schemes, one

with 10 confined concrete fibers and one with two fibers. The results of the simulation are

very similar with minor differences. This can be explained due to the fact that the concrete

fibers are loaded beyond their yield point, so they have high plastic strains and contribute

considerably much less to the element stiffness. However, using more fibers would result in

having to use smaller time steps to reach convergence.

(a) Original section. (b) Coarse section.

Figure 22 Moment-Curvature plot with different fiber discretization of Example 1.

On the other hand, choosing the number of sections, hence the number of integration points,

plays a great role in the solution. Figure 23 shows the solution with different number of

sections. In the linear phase, the number of sections is insignificant because the effect of

inelasticity are not there. However, in the post-yielding loading, the flexibility matrix of the

element is better represented with more sections, since the curvature along the element

becomes non-linear. Also here, choosing more sections would require smaller load step

size.
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(a) Original section.

(b) Coarse section.

Figure 23 Results with different number of sections.
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7. Conclusions and Outlook

The objective of this work is to implement an element to model Reinforced Concrete under

dynamic loading to model seismic effects on a beam-column and response by axial forces

and biaxial moments. The element implemented in a Python stand-alone code [18] and in

the open-source Multi-physics software KRATOS [1], is an element derived by Taucer [2], as

it is the first original well derived, reliable, and computationally efficient flexibility-based fiber

beam-column element.

The element derives its stiffness from integrating the flexibility over sections, which in turn

derive their flexibility from individual uniaxial fibers, each having an individual uniaxial stress-

strain relationship. Therefore, any uniaxial constitutive law can be implemented on the fiber

level. However, the interaction between fibers leading to bond-slip is not modeled. Also, it

assumes small deformations and sections normal to the longitudinal axis. The element being

flexibility based and solved using displacement-controlled non-linear FEM makes it represent

the internal forces exactly regardless of the non-linearities in the system, and models the

element softening.

The theory behind the element as well as the implementation is shown in this Thesis. The

Python code delivers accurate converging results. However, the KRATOS code suffers from

convergence problems. Also, the KRATOS implementation is done on a developer version, so

it lacks the graphical user interface to apply the section discretization.

Further work to this Thesis could include:

• Fixing the implementation in KRATOS code.

• Improving the code to solve multiple elements, such as a frame of beams and columns.

• Studying the effect of the 2D section discretization of fibers.

• Studying the effects of more complicated constitutive laws to include damage of concrete

due to cyclic loading and steel buckling.

• Adding non-linear geometric stiffness to model larger deformations.

• Adding dynamics to model the impact of mass and damping to the system.

• Adding shear forces to model a wider range of problems in which the shear forces affect

the behavior of the element.

• Implementing the graphical user interface to discretize the sections.
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A. Appendix

A.1. Gauss-Lobatto Quadrature Rule

Gaussian quadrature is an approximate integral using a discrete set of points in the range

[−1, 1], where the integrand is evaluated on the points. By definition∫ 1

−1
f(x) dx ≈

n∑
i

f(xi) · wi, (A.1)

where wi is the weight of each point.

The commonly used Gauss-Legendre quadrature rule is exact to integrate polynomials up to

degree 2n−1. However, this method does not include the end-point of the Gaussian domain,

1 and−1. Another rule, namely Gauss-Lobatto quadrature or Radau quadrature, includes the

end-points and the integral is exact for polynomials up to a degree of 2n − 3. The flexibility-

based fiber beam-column element has highly non-linear curvatures at the fixed ends of the

beam, which makes the Gauss-Lobatto rule a more suitable method.

n xi wi

2 ±1 1

3

0

±1

4/3

1/3

4

±
√

1/5

±1

5/6

1/6

Table 3 Example of Gauss-Lobatto quadrature rule points and weights.

Table 3 shows examples of Gauss-Lobatto points and weights. In general, the x values of an

arbitrary number of points are the roots of P ′n−1, where Pn is the Legendre polynomial for n

number of points, and the weight of each point is

wi =
2

n · (n− 1) · [Pn−1(xi)]
2 . (A.2)
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